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Executive Summary

Introduction
Of many issues RV owners face, two were identified for the scope of this project. The first issue

involves the monitoring of the power consumption of the RV. While methods exist to find power usage at a
given moment in time, there are no methods which can easily collect data without human interaction, and
there are no solutions which store historical power usage data. The second issue involves the leveling
state of the RV. As many appliances must be level on the RV to ensure proper operation, a quick, simple,
and precise leveling method is desired. Most RV users complete leveling with a bubble level near the
center of the RV cabin, which requires a large amount of time to travel between leveling posts, and leaves
many opportunities for error.

Project Goals
There are two goals in this project: RV power usage monitoring and RV leveling information. RV

power usage monitoring involves tracking the voltage, current, and power both instantaneously and
historically to allow tracking of power usage trends. RV leveling information provides the angle of the RV
while performing a leveling to allow a simplification of the leveling process. Both RV power usage
monitoring and RV leveling information are to be provided to the user via an intuitive website interface. A
high-level block diagram of the system is shown below in Figure 1.

’

Figure 1: High Level Block Diagram of Project Goals

Applicable Courses From Iowa State University Curriculum
- CPRE288 - Embedded Systems
- EE230 - Electronic Circuits and Systems
- EE303 - Power Electronics and Energy Systems
- SE309 - Software Development Practices
- SE310 - Construction of User Interfaces

New Skills and Knowledge Acquired
- Current sensing designs
- AC voltage monitoring designs
- TCP/IP networking and data transmission
- Sleep mode integration for microcontrollers
- Setting up a reverse proxy for our web server
- Reading and handling incoming data from multiple devices through a serial connection
- Remotely sending and receiving data between pi zero and server through post and get requests
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Team
Nickolas Moser is a Senior majoring in Electrical Engineering with a focus in VLSI. Roles

for this project include embedded systems lead, communication facilitator, and documentation
lead.

Peter Rothstein is a Senior majoring in Software Engineering, with fields of interest in
software testing, automation, embedded systems, and full stack development. Roles for this
project include software lead, developer, and software integration engineer.

Kent Mark is a Senior majoring in Software Engineering with experience in both backend
and frontend development. Roles for this project included UX design, documentation facilitator,
and communication facilitator.

Doug Bullock is a Senior majoring in Electrical Engineering with fields of interests in
circuits, PCB design, and embedded systems. Roles for this project include circuit
implementation, circuit testing, and component configuration.

Utsavee Desai is a senior majoring in Electrical Engineering with focus on Power
Systems and Control systems. Roles for this project included circuit design and circuit testing.

Michael Woo is a senior majoring in Electrical Engineering with an emphasis on VLSI
and Power Systems. Roles for this project included circuit design for power sensors as well as
testing and calibration.

Matthew McCarthy is a senior majoring Electrical Engineering with a focus in Power
Systems. Roles for this project included circuit testing and circuit implementation.

Jace Kunkel is a senior majoring in Electrical Engineering with an emphasis in power
and energy distribution. Roles for this project included circuit testing and implementation.

Project Requirements
Problem Statement
There are two problems RV users face which this project aims to solve. The first issue

relates to the power usage of the RV. While the RV can consume a large amount of power by
running various appliances, there are few low-cost and/or user-friendly methods to measure the
instantaneous power which is consumed by the RV. Additionally, there are no known ways to
automate the tracking of  RV power consumption data. As the RV contains both a
battery-powered DC system and generator/shore power AC system, there are a few different
power sources on the RV which can be metered. The first goal of this project is to develop a
power metering system which can measure the amount of generator/shore AC power and
battery-powered DC power which is consumed by the RV. This would allow the user to view the
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amount of power used either instantaneously or over a period of time for the various power
systems within the RV.

The second issue relates to the leveling of the RV. As many appliances cannot operate
when the RV is not properly leveled, the ability to orient the RV correctly is desired. This is
typically performed using a bubble level placed in the center of the RV cabin, which can leave
room for error. Leveling may also take a large amount of time, as the user must walk from a
leveling post to the bubble level to check whether adjustments are needed. The second goal of
this project is to provide the user with a wireless interface through which leveling data can be
obtained. This will eliminate the need to return to the RV cabin to check a bubble level,
increasing the speed in which the RV can be leveled. Additionally, various sensors can return
angle/vector data which can offer a significant improvement in precision compared to a bubble
level, reducing the probability of errors in the leveling process.

Functional Requirements
Quantitative requirements are as listed below:

- The system shall provide measurements of DC voltage accurate within 5mV.
- The system shall provide measurements of DC current accurate within 10mA.
- The system shall provide measurements of DC power accurate within 50mW.
- The system shall provide measurements of AC voltage accurate within 10mVRMS.

- The system shall provide measurements of AC current accurate within 10mARMS.

- The system shall provide measurements of AC power accurate within 100mWRMS.

- The system shall provide leveling angles accurate within +/- 0.5 degrees.
- If queried, the system shall collect AC and DC measurements instantaneously.
- If not queried, the system shall collect AC and DC measurements once per minute.
- The system shall store one month of relevant AC and DC measurements.

Qualitative requirements are as listed below:
- The website’s user interface shall be intuitive and easy to navigate.
- The website’s user interface shall be accessible from anywhere with internet connection.
- The system shall be designed to reasonably minimize power consumption.
- The system shall be reasonably installable within various RV models.
- The system shall be able to collect AC and DC measurements without user input.
- The system shall update AC and DC measurements without user input.
- The system shall update leveling angles without user input.
- The server shall be up and running 24/7.

Design Constraints
The design of the system has constraints as listed below:

- The total cost of components should not exceed $400.
- Power sensor systems should be capable of withstanding internal RV temperatures not

exceeding 120°F.
- All systems should be capable of withstanding mechanical stress and vibrations

associated with RV travel and use.
- All system components should be as unobtrusive as possible to the end user.
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- The power consumption of the end product shall be a minimal percentage of total RV
power consumption.

- Time associated with design, testing, and implementation is limited to the time frame
necessitated by the course.

Relevant Standards
Relevant standards for this project include:

- IEEE 802.11
- IEEE 802.11 sets a variety of standards and protocols for local area networks. As

the project will be utilizing wireless components which communicate with a server
on the same local area network, this standard will dictate throughput of
measurements from wireless components to server, channels/frequencies
available to the devices, and dataframes for transmitted information.

- ANSI C84.1
- ANSI C84.1 is a high voltage classification standard which is to be observed with

the project. This standard establishes voltage ratings and operating tolerances
for 60Hz AC systems above 100V. With this standard, voltage classifications for
the systems are given for the project along with relevant information for the
associated voltage classifications. Any modification to the RV’s electrical system
should not violate this standard or change the classification of the RV.

- OSHA 1910.303
- OSHA 1910.303 details safety measures and work standards for the project.

Within the context of the project, it outlines safety standards involved with the
design and installation of electrical systems within the RV. While OSHA is
typically intended to implement safety standards between an employee and
employer, we found the safety standards described with this standard to be
relevant to both the design and installation of the project’s electrical systems.

- AEC-Q100, AEC-Q101, AEC-Q200
- AEC-Q100, AEC-Q101, and AEC-Q200 describe stress test qualifications for

integrated circuits, discrete semiconductors, and passive components for use in
automotive applications, respectively. As an RV is a motor vehicle, electronics
which are used in the project shall either meet this qualification or be protected in
such a way that the risks associated with automotive-based stress are mitigated.

Technical Complexity
The technical complexity of this project can be divided into four categories.

1. AC and DC Power Monitoring: While solutions exist for both AC and DC current,
voltage, and power monitoring, none exist within the context of the project. This will
involve the creation of sensors which take advantage of physical phenomena to convert
various quantities to voltage measurements that can be interpreted by the Raspberry Pi
Pico. Safety considerations must be made to avoid damage to power systems which
could cause RV malfunctions or expose users to dangerous voltages. Standards
involving stress on components must also be considered for robust system design.
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2. Microcontroller and Server Interaction: As the Raspberry Pi Pico is a newer
microcontroller, there is a lack of documentation for systems which take direct advantage
of a wi-fi coprocessor to transmit data from microcontroller to server. Existing methods
can be adapted to fit the scope of the project, but require significant effort to meet project
requirements. Additionally, as sensor power consumption is to be minimized, methods to
cut power usage at the microcontroller level without interfering with server
communications are necessary. Sleep modes exist, but can either significantly reduce
responsiveness or add additional complexity to the code base. Robust testing is
necessary to prove results of the power savings methods as well.

3. Data Storage and Handling: As our project will be collecting power usage data once
per minute and should store a month’s worth of data, we will need a system to manage
the 40,000+ data points that can be collected over the course of a month. Data will need
to be stored and processed in such a way that it can be accessed by the user with
minimized latency without data loss. While a database may be an easy solution, our data
storage is limited to the storage available on the Raspberry Pi Zero W.

4. User Interface: Without an intuitive user interface, the user will have no means to view
power consumption or leveling state. Designing user interfaces always comes with
challenges, as different users have different opinions on how they prefer to interact with
various sources of information. While there are general “best practices”, our project will
necessitate feedback in the development process to deliver a robust user interface.

Improvements from Existing Solutions
While solutions exist to monitor the voltage and current in a given AC or DC system, they

do not meet the requirements set forth in the project. While these sensors can return
instantaneous data, they require the user to physically take the measurements, which eliminates
the convenience of wireless monitoring and adds safety issues when dealing with high voltage
AC systems. Additionally, these systems cannot be used to store historical data, only offering
measurements taken at the moment in time in which they are collected, passing the burden to
the RV user to make note of power consumption over time if they are to keep track of historical
trends. Lastly, there is a large cost barrier for these tools, with costs extending into the
sub-$1000 range for brand-name products. A typical RV owner will likely not justify the cost of
these measurement tools if they are not capable of performing measurements without the user
present or an inability to store historical data.

In researching, the group found no method or product which provided wireless leveling
data. Digital levels were found, but existed within the $250 range. The components utilized for
our leveling system have a combined price that does not exceed $50, which offers a significant
cost reduction. Additionally, digital levels often require calibration before use. While our leveling
system also requires calibration before use, it can be guaranteed that the leveling system is
calibrated in relation to the RV. If the digital level is not specifically used for the RV, it must be
re-calibrated before use in the RV, adding additional time to the leveling process.

As discussed above, our solutions will offer an improvement in both cost and
convenience from existing solutions. RVs are inherently expensive, so a low cost solution would
likely be appealing to a majority of RV owners. Additionally, RVs are difficult to maintain, and
data returned by our system can be used to troubleshoot simple issues which would normally
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not be accessible without a visit to an RV service center. Lastly, as one purpose of an RV is to
provide the user with an opportunity to enjoy traveling, camping, or other outdoor activities, an
increase in the convenience associated with utilizing an RV will contribute to the user’s
enjoyment.

Design Overview
High-Level Overview
The system implemented for our solution consists of four main subsystems: Power

Sensors, Embedded Systems, Data Handling, and User Interface. The power sensors serve
to convert physical AC and DC voltage and current measurements into voltage measurements
which can be interpreted by an analog-to-digital converter on a microcontroller. The embedded
systems serve to interface the power sensors and IMU to the data handling system. The data
handling system serves to query AC and DC voltage and current measurements, compute AC
and DC power, store relevant measurement data, and provide measurement data to the user
interface. Lastly, the user interface provides information stored within the data handling system
to the user. A high-level block diagram of the design is shown below in Figure 2.

Figure 2: High-Level Block Diagram of System Design
Power Sensors
The power sensors for the RV focused on monitoring the DC current and voltage from

the 12V batteries, as well as the AC current and voltage from the generator onboard the RV.
The AC current and voltage monitoring circuits were stored in an outlet box identical to the one
that can be found in the RV. We then connected our outlet box in series with the one in the RV,
this way we could monitor the AC power without tampering with the generator, and our sensor
box could be installed by just plugging the power for the RV into our outlet box, and our outlet
box into shore power. For our DC sensors, we were unable to complete a design for how we
would attach the sensors to the battery. The specific designs for each sensor are listed below:

1. DC Voltage: The design for the DC voltage circuit involved directly connecting to the
terminals of the battery and then using a voltage divider to reduce the voltage to suitable
range for our ADC. The voltage was then buffered using an op-amp in unity gain
configuration. The output voltage from the op-amp was then fed directly to the ADC of
the Raspberry Pi for data collection.
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Figure 3: DC Voltage Sensor Architecture
2. DC Current: The design for the DC current circuit involves using a shunt resistor and a

micropower instrumentation amplifier to monitor the current coming from the battery.
Output current from the shunt is sent to the ADC for data collection.

Figure 4: DC Current Sensor Architecture
3. AC Voltage: The design for the AC voltage monitoring was nearly identical to the DC

voltage monitoring circuit. The lone addition to the circuit architecture was a high voltage
power rectifier that was then fed through a similar voltage divider. The resistors used in
the voltage divider were made sufficiently large to compensate for the higher voltage of
the generator relative to the battery. The voltage across the divider was then buffered
using an op-amp in unity gain configuration, and the output voltage from the op-amp was
fed directly to the ADC on the Raspberry Pi for data collection. The general architecture
for the circuit is shown below:
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Figure 5: AC Voltage Sensor Architecture

4. AC Current: The design for the AC current monitoring circuit was based heavily on
using a current transformer to isolate and step down the current coming directly from the
generator. By using a current transformer, we never directly needed to splice into any of
the wiring of the generator, and could set up a simple circuit using a load resistor and
rectifier to generate a signal that could be fed to the ADC on the Raspberry Pi for data
collection. The circuit architecture is shown below. The current source is symbolic for the
secondary current generated by the current transformer.

Figure 6: AC Current Sensor Architecture
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Embedded Systems
The embedded systems portion of the project serves as the interface between sensors

utilized within the project and the data handling system. Relevant sensors include the power
sensors discussed in the previous section and the inertial measurement unit (IMU) used to
perform leveling of the RV. The power sensors are interfaced via a Raspberry Pi Pico with an
ESP8266 wi-fi coprocessor which wirelessly transmits data to the Raspberry Pi Zero W. There
are two Raspberry Pi Pico’s present in the design: one for DC power sensor measurements and
one for AC power sensor measurements. In contrast, the IMU is interfaced directly via the
Raspberry Pi Zero W. All devices involved will be mounted within 3D printed enclosures
intended to minimize mechanical and thermal stress associated with RV usage. Code was
written in python for all portions of this subsection. A block diagram of this system is shown
below in Figure 7.

Figure 7: Block Diagram of Embedded Systems

The Raspberry Pi Pico was utilized mainly for its 12-bit ADC. While Arduino products are
a common choice for embedded systems projects for their ease of use, they typically only have
10-bit ADCs, which have 1/4th of the resolution of the Raspberry Pi Pico’s ADC. Additionally, as
Arduino products typically operate at 5V, their ADC resolution is degraded compared to the
Raspberry Pi Pico, which operates at 3.3V. For example, a 10-bit ADC with a reference voltage
of 5V offers a resolution of 4.88mV/step, whereas a 12-bit ADC with a reference voltage of 3.3V
offers a resolution of 0.8057mV/step, providing roughly 6 times more accuracy per step. While
using the Raspberry Pi Pico added complexity due to reduced user documentation, it increased
our ability to provide the user with accurate data on power consumption.

The ESP8266 wi-fi coprocessor was utilized for this project as a previous design did not
provide a robust solution to data transmission between Raspberry Pi Pico and Raspberry Pi
Zero W. This previous solution is discussed in Previous Designs / Changes from 491. While
this component adds complexity to the design, it serves as a capable intermediary node
between the Raspberry Pi Pico and Raspberry Pi Zero W. In operation, the ESP8266 receives
queries from and sends responses to the Raspberry Pi Zero W via a TCP socket connection
and the AT command set. The ESP8266 hands off queries to and transmits data from the
Raspberry Pi Pico via UART. Data transmission and reception is limited to 2 kilobytes on the
ESP8266, but this proved sufficient for our application.
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While newer wi-fi coprocessors exist, the ESP8266 was used due to a lack of availability
of newer wi-fi coprocessors. The AT command set is a set of proprietary commands which are
used to interface as a modem in wireless applications. This command set was used as it is
packaged with the default ESP8266 firmware, and updates which allow other programming
languages could not be made due to a lack of availability of hardware interface ICs.

Upon startup, the Raspberry Pi Pico runs various setup commands to initialize the ADC
and set up connections with the Raspberry Pi Zero W. The wireless setup process consists of
sending AT commands to the ESP8266 via UART to query firmware version and MAC address,
connect to a wi-fi access point connection, and create a TCP socket connection with the
Raspberry Pi Zero W. Once a TCP socket connection is established, the Raspberry Pi Pico
waits for the Raspberry Pi Zero W to send a query for measurement data.

Once a measurement query is received, the Raspberry Pi Pico begins taking ADC
readings across two ADC channels and placing them in a 2 kilobyte buffer. Each power sensor
is assigned to an ADC channel in a given AC or DC power system. Tags are appended to the
measurement depending on the power sensor and associated ADC channel in which the
measurement originates. Extra characters are added to allow parsing between tags and
readings on the Raspberry Pi Zero W. Figure 8 shows an example DC voltage measurement
with tag and parsing characters.

Figure 8: Example DC Voltage Measurement with Tag and Parsing Characters
Once the 2 kilobyte buffer is filled to a set threshold to prevent overflow, an end tag is

appended. Data in the buffer is then transmitted to the Raspberry Pi Zero W via the established
TCP socket connection on the ESP8266. The Raspberry Pi Pico will wait until it is queried again
for measurement data and repeat the above process. Figure 9 shows a state diagram of the
Raspberry Pi Pico’s operation.
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Figure 9: State Diagram of Raspberry Pi Pico Operation
While waiting for a measurement query, the Raspberry Pi Pico will enter a low power idle

state. This is accomplished by maximizing clock speed while gathering measurements and
transmitting data, and minimizing clock speed while idling. During setup, or when a
measurement query is received, the clock speed increases to 250MHz to ensure sufficient
responsiveness and data acquisition. When setup is completed, or data transmission is
completed, the clock speed is reduced to 16MHz. It is shown in Design Testing: Embedded
Systems that reducing the clock speed during idling can provide an ~80% reduction in power
consumption during operation.

The IMU utilized for the project is the ICM-20948 9-DoF IMU breakout board
manufactured by Adafruit Industries. This device offers a simpler hardware interface for the
ICM-20948 IMU manufactured by InvenSense, with an onboard power supply,
breadboard-friendly I2C pinout, and level shifting. In addition to the user-friendly hardware
interface, Adafruit Industries also provides a python library for simple I2C interaction with the
breakout board. This aided in the simplification of development for RV leveling angle
measurement.

When implemented, the IMU will be fixed within an enclosure to ensure that the position
of the breakout board remains as constant as possible. This was accomplished via a 3D printed
enclosure, shown below in Figure 10. The enclosure allows space for both the Raspberry Pi
Zero W and IMU, and leaves an opening for ports on the Raspberry Pi Zero W. Additionally, a lid
can be installed if the user does not desire to view the components once they are mounted.

Figure 10: Simple Enclosure for IMU and Raspberry Pi Zero
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Although the IMU provides accelerometer, gyroscope, and magnetometer data, only the
accelerometer data is used for this portion of the project. When queried, the accelerometer
provides acceleration in the X, Y, and Z directions. Using the atan2() function provided within
python, the acceleration vectors in the X, Y, and Z directions can be converted to angles which
describe the leveling of the RV from front to back and side to side. Figure 11 shows an example
of this vector to angle conversion.

Figure 11: Vector to Angle Conversion for RV Leveling
There are two interfaces which interact with the IMU: a calibration interface and a

leveling interface. The calibration interface is necessary for proper function. As the IMU returns
angles relative to the X, Y and Z vectors of the IMU breakout board, it is not accurate relative to
the RV if the wall on which it is installed is not exactly parallel to any of the IMU breakout
board’s X, Y and Z vectors. Once a user completes leveling manually, they are able to press a
“calibrate” button within the user interface. The calibration interface takes a large amount of
measurements to establish its installed orientation relative to the IMU breakout board’s
orientation. These orientations are saved on the Raspberry Pi Zero W and utilized within the
leveling interface. While little drift was observed in testing, occasional calibration may be
necessary depending on the method used to install the IMU enclosure within the RV. If the IMU
enclosure is not well secured, its angle relative to the wall may change during travel or use,
making the previously calibrated angles incorrect.

The leveling interface returns the angles needed to level the RV to the previously
calibrated leveling angles. This leveling angle is then provided to the user via the user interface
for use in leveling the RV. While the IMU is capable of calculating leveling angles almost
instantaneously, a short delay is incorporated in the code during this process. As RV leveling is
a relatively slow process, normally taking 10-15 minutes, returning an angle every second or
every couple of seconds works to save power during usage while still providing the user with
sufficient information. Taking 50+ measurements per second does not add any value during the
leveling process, and only serves to consume unnecessary power. Once leveling is completed,
the leveling interface can be closed, and the system will not query leveling data until the
interface is reopened.
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Data Handling
To handle incoming data, we decided to design a system that allows us to effectively

read both AC and DC readings in separate scripts. Since a zero has two UART channels, we
decided that instead of using one serial connection for both incoming pico readings, we would
open two separate serial ports in two separate python scripts, and divide them by AC and DC
readings.The serial interface was used due to a lack of time to integrate the TCP socket
protocol discussed in the previous section. Both systems essentially function the same; the only
difference is the communication protocol. The general design for each script is as follows:

● Open a serial port, either ACM0 driver for AC, or ACM1 driver for DC
● Sort incoming data by a given tag associated with the reading, for example “acv”,

being an AC voltage reading.
● Parse and split the data by a planted ‘?’ between tag and value
● Setup a POST request to query a set function for whatever data is gathered
● From there, read in the data and display on the user interface

This is the simple overview, but in the background we are also checking for table
cleaning conditionals, checking for an instant history button click to be set to true, and power
calculations occurring after voltage and current readings. This is where there is a lot of post and
get requests occurring at once, and where some timeouts needed to be implemented in order
for our data to be sent and received without error.

Figure 12: Data communication/integration setup
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Above in Figure 12 shows what we designed as our data transfer system using two pi
picos and a pi zero. To the right, you will see the zero and an IMU within a 3D printed enclosure.
This is what we are using when collecting and calculating our leveling data. To the left you see
the two picos which are connected to a USB hub, which is connected to the zero, where data is
sent simultaneously through two separate UART channels.

User Interface
The website as a whole was designed to be a low-level interface that is accessible from

anywhere. In order for it to be accessible from anywhere, and not just on the Iowa State
campus, we had to set up a reverse proxy to an external-facing hostname. This means that
when hosting our web server, this proxy will sit in front of it, forwarding client requests to our
web server, acting as a filter and a gateway to a public IP, accessible from anywhere. Outside of
networking, our design consisted of the following:

● GitLab: source control
● Git: version control
● React: frontend
● Node.js: backend
● MySQL: database
● Agile: software development methodology

We chose this design because it offered us familiar frameworks and libraries to work
with, as well as a good option for a data visual project. On top of that, working in an agile
development helped the software group work with continuous improvement, and iterations that
allowed us to develop at a rate where we would still be able to integrate our work with the power
side.

The user interface was designed to be very simple and easy to use. We knew that we
wanted current/instantaneous readings to be displayed on the main page, then branch out with
buttons to separate dialogs for other functions like instant history, history, leveling calibration,
and leveling adjustment.
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Figure 13: Main screen, showing current readings

Figure 13 is the default screen that pops up upon search. This screen is meant to show
current readings that update upon refresh. There are many different buttons on this screen,
each corresponding to the row it lies on. Current and voltage readings have both instant history
and history buttons due to the fact that these are non-calculated values that are being read from
the RV. Power is being calculated from the corresponding AC or DC voltage and current
readings by multiplying them together. Outside of AC and DC, there is the leveling row that has
two different buttons, one for calibration, and one for the calculated adjustment data after the
said calibration button has been pressed. This was designed this way to make sure there are
not any unnecessary calibrations every time you want to see the adjustment, if there was only
one button. The calibration button is meant to be pressed rarely only when you, obviously, need
to calibrate the leveling. The following buttons are labeled above, and can be seen in different
photos below:
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Figure 14: History screen (1)

Figure 14 shows the history screen, which can show either AC or DC power, voltage, or
current data history, depending on the button clicked. In this photo, it shows only a history of 5
readings, which was used only for testing maximum storage conditionals, and cleaning
purposes. It also is taking in readings every 5 seconds, but as planned for RV can be changed
to 60 seconds (every minute). Like mentioned, there is a cleaning mechanism that checks if it
has reached a manual input ceiling amount of data, that will delete the oldest data and allow a
new one to be entered into the table.
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Figure 15: Instant history screen (2)

Figure 15 shows the instant history screen. This gives you a maximum of 20 readings,
being read every second (may take up to 20 seconds to render). The design was to make this
into a waveform, but as of now, is showing the instantaneous data within a table. We decided to
include this in our design to not only act as a placeholder for a possible future waveform
generation, but in general to give the RV user an idea of the incoming data in very recent history
(less than a minute).

The calibration button (3) is simply a button that is pressed when you want to calibrate
the leveling. This basically will run a script to calculate the front/back and side/side average for
leveling the RV using an IMU unit. Upon clicking, it will determine whether or not the calibration
was successful, and give you a message depending on the outcome. Once this is completed,
the adjustment button (4) will contain data after a small amount of time.
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Figure 16: Leveling adjustment screen (4)

Figure 16 is the leveling adjustment screen. This shows the user the updated front/back
and side/side angles along with the “toLevel” angles. This is done by taking accelerometer data
in m/s^2 and translating it to an angle, using an atan2 function.This tells the user how to level
their RV with ease. Like mentioned before, this will show data, as long as the RV has been
calibrated before, with the calibration button (3).

Design Testing
Power Sensors
Testing for the power systems portion of the project was divided into 4 different phases,

one for each specific sensor. This consisted of testing the DC current and voltage, as well as the
AC current and voltage sensors.

1. DC Voltage: Testing for the DC voltage sensor was the most straightforward, as we
were able to use standard bench power supplies and measurement tools available to us
to replicate the 12V DC input signal.

2. DC Current: We were unable to find a safe way to test the DC current monitoring
circuit. This is due to the fact that we did not have the necessary tools to simulate a high
current DC load. We expected that the DC current could be several amps, which is much
higher than we could feasibly simulate in a laboratory setting.

3. AC Voltage: Testing for the AC voltage was not conducted due to timing limitations.
However our plan for testing will be discussed in the AC current portion of the design
testing.
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4. AC Current: Testing for the AC current monitoring was conducted on a 90W box fan.
We conducted AC current testing on a relatively low current box fan because it was
necessary to use an AC current device that was disposable as we needed to splice into
its insulation to install the current transformer. We installed the current transformer in the
device and tested the fan at varying speeds to ensure that our current monitoring circuit
was functioning correctly under various conditions. It was also our intention to test our
AC voltage circuit by taking advantage of where we spliced into the box fan. Our plan
was to plug our AC voltage sensor into the place where we spliced into the wiring of the
box fan, so we could read 120V coming from the outlet. Due to timing constraints we
were unable to complete the AC voltage testing.

Embedded Systems
Testing for the embedded systems portion of the project boiled down to two aspects:

data handling and power efficiency. Data handling testing involved the speed and accuracy at
which ADC readings could be acquired and transmitted to the server. Power efficiency testing
involved finding ways to reduce power consumption of the Raspberry Pi Pico to prevent
excessive power draw.

The first data handling test consisted of the system’s ability to gather accurate data.
First, the system was calibrated against a DC voltage source, and ADC measurements were
measured and plotted. It was found that the ADC had no observable offset voltage, and had a
linear slope across 100mV input steps from 0V to 3.3V. This proved sufficient for our application,
and was then tested against the output of the DC voltage sensor. A known voltage was applied
to the DC power sensor, and the output voltage was measured with both a multimeter and the
ADC. It was found that there was a 3mV deviation between the multimeter and ADC
measurements during operation. As the measurement which requires the most stringent
accuracy, the DC voltage measurement, must be within 5mV, this deviation proves acceptable
for our application .

The next data handling test consisted of ensuring that the system could sample at a
speed which could accurately capture AC sensor data. As the AC power used in the system
would be 60Hz, the output of the AC power sensor would also be 60Hz. To sufficiently sample
the AC power sensor output, the Raspberry Pi Pico would have to sample the output at 120Hz
per the Nyquist theorem.However, it was desired to oversample the output wave in an attempt
to capture the peak output value of a given AC power sensor. If the peak output of the power
sensor is not captured in a given data acquisition sequence, it will not be representative of peak
power draw. Therefore, it was determined that the ADC should oversample at a rate over 120Hz
to capture peak sensor outputs. However, sampling would have to occur across two different
channels which shared the same ADC, which introduces additional bandwidth limitations.

To test the sampling rate, a 60Hz sine wave was applied to two channels of the ADC
with different amplitudes via a waveform generator. The Raspberry Pi Pico clock speed was
increased to 250MHz, and the ADC was sampled as rapidly as possible until the 2 kilobyte
transmission buffer was filled. The data was then transmitted to a script which plotted measured
data for simple visualization during testing. One test with one channel reading a 1V sine wave
centered around 1V and the other channel reading a 1.5V sine wave centered around 1V is
shown below in Figure 17. All peaks met the 10mVRMS threshold for our application across
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multiple tests. In decoding on the server end, these peaks can be found using a maximum or
minimum value search function. It is shown in Figure 17 that the Raspberry Pi Pico can capture
five samples per cycle per channel, giving the ADC sampling rate of roughly 600Hz. This gives
each channel of the ADC in a two-channel setup a sampling rate of roughly 300Hz. While the
waveform is not completely captured, the peak values are captured, which is necessary to
calculate power consumption.

Figure 17: Data Acquisition Test with 60Hz Input Sinusoids of Various Amplitudes

The last data handling test considered the total amount of time required to acquire ADC
readings and transmit them to the server. On the Raspberry Pi Pico, approximately 500
milliseconds are required for overhead to accelerate the clock to 250MHz without causing any
clock issues and data loss. Additionally, with the given sampling frequency compared to the
measured wave, it is estimated that it takes roughly 250 to 300 milliseconds to collect 2
kilobytes of ADC readings. When combined with the estimated 200 milliseconds of overhead
necessary to send the data via TCP socket, it takes roughly one second from measurement
request by the server to measurement reception on the server. While not instantaneous, the one
second timeframe was the minimum which could be achieved with the given setup. Lastly,
packet loss was never observed over various testing intervals ranging from a few minutes to
one hour, so it can be assumed that there is no packet loss in operation.

As a power monitoring system which acts as a significant load on the system which it is
monitoring is useless, a method of power savings was desired. It was found during research
that power consumption should scale linearly with clock speed, with higher clock speed
correlating to increased power consumption and vice versa. These differences were noticeably
large; reducing clock speed from 150MHz to 16MHz was given by the datasheet to reduce
power consumption by ~80%. Therefore, the primary method of power savings for the
Raspberry Pi Pico would involve increasing the clock speed during data handling, and reducing
the clock speed during idling.
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To test this theory, a clock speed adjustment method was implemented. During setup
and data handling, the clock speed was increased to 250MHz via the python function
machine.freq() to ensure sufficient sampling and system responsiveness. While waiting for a
measurement request or otherwise idling, the clock speed was reduced to 16MHz. Using linear
approximations based on datasheet current consumption values, it was estimated that the
microcontroller will consume a maximum of 60mA of current while the clock speed is adjusted to
250MHz and 7mA of current while the clock speed is adjusted to 16MHz. If a measurement is
queried once per minute, and the high clock speed data handling takes one second, the
microcontroller’s average current draw will be 7.883mA. This gives an average power
consumption of 26.015mW at the Raspberry Pi Pico’s operating voltage of 3.3V, assuming
power loss is negligible.

In testing, current draw was measured using a multimeter during different modes of
operation. It was found that the Raspberry Pi Pico consumed 36.26mA of current during setup,
44.2mA of current during data acquisition and transmission, and 7.59mA of current while idling.
Setup power consumption can be neglected as it represents a minimal fraction of system load
during long term operation. With setup power consumption being neglected and a measurement
being queried once per minute, the microcontroller will draw an average current of 8.2mA while
running during long term operation. At the Raspberry Pi Pico’s operating voltage of 3.3V, this
gives an average power consumption of 27.06mW. If the system clock speed is left at 250MHz
during operation, the system would consume roughly 145.86mW, representing a ~539%
increase in power consumption. During operation, this idle feature will help to conserve power
consumed by the Raspberry Pi Pico and ensure that the power monitoring system does not
become a parasitic load on the system which it is tasked with monitoring.

Testing of the IMU was relatively simple; all that was necessary was a calibration method
and accuracy check. All testing was conducted while the IMU was fixed within a 3D-printed
enclosure to simulate use in the RV.

As calibration was achieved by collecting a large amount of samples and averaging
them, it was necessary to know the number of samples needed to be guaranteed an accurate
calibration. To test this, a quantity of sample points were arbitrarily chosen, and the calibration
script was run while the IMU and enclosure were fixed in one place. The calibration script was
run ten times, and the deviation in calibrated values was noted. Calibration sample points were
increased until the change in calibrated angle values between separate runs was less than 0.1
degrees. Using this testing method, it was found that 100 samples was the minimum number of
calibration sample points necessary to guarantee less than 0.1 degrees of deviation between
separate calibration runs. Therefore, calibration is performed by averaging 100 sample points.

To test the accuracy of the IMU, a calibration was performed with the IMU and enclosure
orientation relative to a protractor. Once calibration was completed, the IMU was rotated in
either the front-to-back or side-to-side angles, and the angle of the IMU and enclosure was
measured via the protractor. Then, the IMU angle was found via a test script running on the
Raspberry Pi Zero W which returned both the front-to-back and side-to-side angles. The angle
measured via the protractor and the angle measured via the IMU were then compared for
accuracy. While the protractor was only accurate to 1 degree, which is less than the specified
+/- 0.5 degrees specified for the project, it was found that when the IMU was oriented to the
nearest degree on the protractor, the test script returned an angle which was within +/- 0.1
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degrees of the protractor, which correlates with the 0.1 degree deviation from calibration and
error associated with being accurate to the nearest degree. There was roughly +/- 0.05 degrees
of noise in the IMU measurement, but this is small enough that it can be ignored. Accuracy
beyond 0.1 degrees is not necessary for an end user, and will be rounded off at the user
interface. This testing, along with accuracy guarantees made in the ICM20948 datasheet,
proved that the IMU would be sufficient for our application.

Data Handling
In order to test the data handling aspect of our project, we need to do some sort of

integration testing between the different components that are communicating with each other.
This would include both the data transfer from pico to zero and zero to server.

First, the data transfer from pico to zero. This mainly consisted of AD-HOC tests to test
what type of incoming data there was, how many intervals between readings there were, and
when to capture/collect data at an efficient rate that we would need for this web application.
Since we were working with two separate picos (for AC and DC readings), we tested both picos
by writing python scripts, opening up a serial port for both picos using two separate UART
drivers. Within these, we were able to complete our random tests to see whether or not we
needed to request data from the picos, or if we could contain a constant stream of incoming
data, and parse it at our time of need. We tested it and found that we were capable of not
needing a requesting based approach, rather we could read a line of incoming data every ‘x’
interval. Other tests included trying different timeout and sleep ranges between cycles to make
sure our web application will run smoothly and not get backed up, and testing to see if there was
inconsistency within the incoming data by running it at different times/lengths. In terms of using
“real” data for testing, we were able to hook up to a generator at a lab bench. We were able to
monitor and parse through this “real” data that we would be able to manually enter and mimic
the RV output.

Second, the data transfer from zero to server. This part of our testing was to see if there
was any inconsistency or delay with having multiple get and post requests happening within a
second of time. This would include having different timeout lengths, querying the same table to
get, set, and empty table data all within a very small amount of time, and doing random button
clicking to see if there are any random delays or incomplete data transfers between clicks.

User Interface
Overall testing for the user interface was done via unit testing using a test framework

known as Jest. A test suite was created that would model and test various aspects of the web
application for proper function, such as, but not limited to, button press, page refresh, and
various aspects of page interactivity. Integration testing was also done to ensure that data
values from the various sensors were being transmitted to the front-end and also stored for
future processing and/or retrieval in the backend servers. From this, test cases were also
created to not only examine and verify the functionality of data retrieval from the backend
servers, but also ensure that the data values were correct and uncorrupted. We also made use
of heavy manual testing and visual inspection to verify that the web application loaded correctly,
clickable events happened as they were meant to, and that the application was easy to use from
a user experience perspective.
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Implementation
Due to slowed progress in development of the power sensors, the physical

implementation of the system was limited. However, there were still components which could be
physically implemented within the RV at the end of the development cycle.

The IMU and Raspberry Pi Zero W were implemented within the 3D printed enclosure as
described in Design Overview: Embedded Systems. PLA material was deemed adequate for
this enclosure, as it would not experience stress capable of damaging the enclosure when
mounted within the RV cabin during normal operation.The enclosure consisted of mounting
points for device PCBs placed at dimensions specified by mechanical drawings and fabrication
prints with additional space for wires to be routed as needed. Within the design, 2.5mm bolts
were used to fix the device PCBs to their respective mounting holes. Figure 18 shows the IMU
and Raspberry Pi Zero W mounted within the enclosure.

Figure 18: Raspberry Pi Zero W and IMU Mounted Within Enclosure

Enclosures were not created for the Raspberry Pi Pico and ESP8266 for either the AC or
DC power sensor. As designs for these sensors were not finalized, many considerations could
not be made for the enclosures for these devices. These considerations include enclosure
material, physical size constraints, proximity to the associated sensors, shielding from possible
wireless noise and interference, mitigation of mechanical stress during operation, protection
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from environmental contaminants, and potential heat dissipation needs. While a vented or
air-cooled design was considered, the openings needed to achieve sufficient air flow would
likely necessitate additional filtering to prevent the introduction of environmental contaminants.
Shock and stress can be easily mitigated using low-cost polyurethane bushings, but space
requirements could prevent their use depending on the necessary size and/or density. Lastly, as
there is likely to be other devices which introduce interference and noise in sensor readings, it
may be desired to shield the enclosure, However, shielding may reduce the effective data
transmission range of the ESP8266, causing data corruption or loss during operation. While
many considerations were made in the design of these enclosures, none were completed due to
the lack of finalized AC and DC sensor designs.

Appendix
User Guide

Physical Sensor Installation
AC Sensor Installation

NOTE: This physical design for the AC circuit is unfinished by the plan for installation is
below:

1. Mount the Power Outlet Box to the back of the RV within reasonable distance of the
shore power plug

2. Plug the male NEMA 14-50P connector from the RV into the 125/250V RV Power Outlet
Box containing the AC power sensors

3. Connect the male NEMA 14-50P connector from the Power Outlet Box containing the
sensors into the Outlet Box fixed onto the RV where the connection to shore power is

DC Sensor Installation
NOTE: We were unable to finish a design for DC sensor installation, but the expectation

was to have a fixture similar to the AC sensor installation, where we created a fixture that would
act as a middleman between the batteries and the RV.

Sensor Connection To Server
NOTE: For proper operation, a router or other access point must be used on the RV. The

sensor must wirelessly connect to a router in order to form a connection with the server, and will
not be able to send data without a router. The SSID and password for this router should be
known for setup.

1. If this is NOT first boot of the system, skip to Step 7
2. The server should already be connected to wifi by default. If not, run “raspi-config” within

a terminal on the server and complete the wi-fi setup instructions. Identify the IP address
of the server by running “ifconfig” within a terminal. Make note of the IP address for Step
5.

3. Connect the Raspberry Pi Pico to a computer via USB and enter the main.py file using
the Thonny IDE.
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4. In the espSetup() function, there should be two variables which are named “wifiSSD” and
“wifiPWD”. Change these variable values to the router SSID and router password,
respectively.
NOTE: For proper function, the router must have a password. The system will not work if
the password is left blank.

5. In the espTCPSetup() function, there should be one variable which is named “server”.
Change this variable value to the server IP address found in Step 2. DO NOT EDIT THE
VARIABLE NAMED “port”.

6. Once edits are made, save the file to the Raspberry Pi Pico and unplug the Pico from the
computer.

7. Activate power to the Raspberry Pi Pico and ESP8266 wi-fi coprocessor. The
microcontrollers will begin running setup scripts to connect to the router and TCP server.

8. The Raspberry Pi Pico’s onboard LED will indicate when the system is connected to the
router. If power sensor readings are visible on the user interface, then the TCP
connection is good.

9. If any debugging is needed, it can be accessed by connecting to the Raspberry Pi Pico
via USB on a computer and utilizing the “Shell” feature within the Thonny IDE to get
relevant debugging information.

Interaction with User Interface
Leveling Calibration:

NOTE: Leveling calibration should be performed after the system is first installed, once
every 6 to 8 weeks during use, or after a period of extended storage.

1. Perform RV leveling manually using a bubble level or other leveling method.
NOTE: DO NOT USE THE LEVELING INTERFACE FOR THIS STEP. As the goal of this
step is to calibrate the leveling interface, this may contribute inaccuracies to the
calibration. A leveling method independent from the leveling interface will minimize
calibration errors.

2. Within the web interface, navigate to the “Calibrate” button. Check that the RV is level
before continuing.

3. Press the “Calibrate” button within the web interface once ensuring the RV is level. The
system will then take a large amount of measurements.

4. The system should complete calibration within ~5 seconds. Now, the leveling interface
can be utilized for RV leveling.

Obtaining a Measurement Quantity:
1. Enter the user interface via the website name assigned to the server on a web browser.
2. The leftmost fields indicate the quantity which is being measured. To the right of those

identifiers is the most recent measurement of that quantity.
3. There are two buttons to the right of the most recent measurement which can be

selected. The first button shows waveform data, and the second button shows historical
data
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Previous Designs / Changes from 491
- Functional Requirements: Removal of temperature measurement

In the previous semester, one functional requirement involved the monitoring of the RV
cabin temperature. This temperature measurement was to be viewable on the user interface
and accurate to 1𝆩F.

However, this temperature measurement was removed from the final list of functional
requirements. It was seen as a feature which would be implemented last, as it would likely be
redundant due to an onboard thermostat which also provided cabin temperature. Additionally,
calibration would be difficult due to an inability to track temperature sensor variations and drift
over time. Most available parts are only accurate to 1𝆩C, or ~2𝆩F, which is not accurate to our
specified functional requirement. Therefore, cabin temperature monitoring was left off the list of
functional requirements.

- Embedded Systems: Updating from USB to wi-fi data transmission
A previous design utilized USB data transmission between the Raspberry Pi Zero W and

Raspberry Pi Pico. A reading could be queried and a response could be transmitted via serial
communications. In testing, this provided both accurate data resolution and sufficient
transmission speed. However, implementation presented issues which would make this design
not viable.

The first issue required drilling holes through the walls of the RV to run a USB cord from
the Raspberry Pi Zero W to Raspberry Pi Pico, which could be undesirable to some users. The
second issue involves the physical length of the USB cord. It was likely that 20+ feet of USB
cord would need to be used to connect the Raspberry Pi Zero W to a given Raspberry Pi Pico.
USB standards specify that USB cords not exceed 5 meters, which is less than the 20+ feet
necessary for implementation. Violation of USB protocol meant the system could behave
unreliably, slowing data transmission or even losing data packets. The third and final issue
involved the limited USB ports on the Raspberry Pi Zero W. As the Raspberry Pi Zero W only
has one USB port, a USB port extender was necessary for more than one device. The USB port
extender presented some issues in use and added an unattractive bulk to the final
implementation.

To avoid the above issues, the USB data transmission method was overhauled to the
current system which utilizes an ESP8266 wi-fi coprocessor to transmit data between the
Raspberry Pi Pico and Raspberry Pi Zero W. It was found in testing that the overhaul was
successful, as data could still be transmitted at both an accurate resolution and sufficient speed.

Other Notes and Issues
- IMU Addressing Issues

As the I2C protocol relies on all target devices to have an address, knowledge of the
IMU I2C address was necessary to write the leveling code. The address provided by Adafruit
Industries was 0x69, but when searching for I2C devices at that address on the Raspberry Pi
Zero W, errors were encountered. However, there was a device at the address 0x68 which
appeared to be the IMU. After further testing, it was found that the IMU’s I2C address was 0x68
after running some test code to obtain various acceleration, gyroscope, and magnetometer
measurements. Therefore, we assumed the IMU had an incorrectly assigned address.
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There was an onboard contact point which could be bridged with solder to change the
device address from 0x69 to 0x68, but it was not initially bridged. One test consisted of bridging
the contact point to observe if the address changed, which proved unsuccessful; bridging the
contact point with solder did not change the address. Therefore, we believe the IMU had likely
been assigned an incorrect address during some step in the fabrication process. All code
associated with the IMU was changed to utilize the device’s observed address and not the
datasheet listed address.

- 16-bit ADC reading issues
While the onboard ADC for the Raspberry Pi Pico is 12 bits, the builtin micropython

function for collecting ADC readings returns a 16 bit number. This introduced an issue, as it was
unknown where the extra 4 bits within the readings were originating. Additionally, it added some
noise to the ADC reading, which could lead to small miscalculations. In testing, it was found that
the four least significant bits of the 16 bit ADC reading were mostly noise. This was determined
by applying a DC voltage to the ADC and observing the measured output.

To mitigate this issue, the 16 bit ADC reading was bit shifted such that the four least
significant bits of the reading were removed. This returned a 12 bit ADC reading which
experienced a reduction of noise while still retaining 1mV accuracy. The bit shifting solution was
implemented in the final design and proved to be an adequate fix while introducing little
additional code overhead.

- Part Stock Issues
As noted in the above sections, some design decisions were made based on the

availability of parts. While our design does not utilize many components which were affected by
the silicon shortage experienced during 2021 and 2022, some portions of development were
slowed when part stock issues arose. Design decisions related to part stock issues are
discussed below.

While the ESP8266 wi-fi coprocessor is currently NRND (not recommended for new
designs) per its manufacturer, they were purchased before the NRND lifecycle phase by a group
member who utilized them for homemade wi-fi development boards. The new recommended
part is the ESP32, which features Bluetooth and other connectivity options, but is only in stock
periodically through trusted distributors. Rather than waiting for the ESP32 to become available
and creating a development board to interface with the hardware, the ESP8266 was utilized as
it was readily available and has only recently been placed in the NRND lifecycle phase.

Raspberry Pi devices faced part stock issues during the latter half of the course. Early in
the development phase, a Raspberry Pi Zero W was purchased for use within the project.
However, the Raspberry Pi Zero W did not come with headers pre-installed, and the IMU
required headers for its hardware interface. An unknown error occurred during the header
installation process, which destroyed the Raspberry Pi Zero W. At the time it was destroyed,
there were no Raspberry Pi Zero Ws available; the only available Raspberry Pi devices were the
Pico microcontroller, which did not have the processing power required, and the Raspberry Pi
Compute Module, which consumed too much power during operation and required an additional
carrier board for hardware interfaces. Therefore, one group member volunteered their
Raspberry Pi Zero W for the remainder of the project, which was returned at the end of
development and testing. All relevant software was pushed to the group github repository since
the device was returned to the group member.
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- Use of UART interface for final demonstration
As the discovery that the design violated USB protocol standards (USB cable over 20

feet) occurred very late in the development process, there was little time left to integrate the new
TCP socket based query system to the final design. Therefore, the TCP socket based query
system was left as a proof of concept, and all demonstrations were done using the UART
interface. Demonstrations could occur without violating USB standards, so the system
remained.

The UART interface essentially accomplishes the same end goal of transmitting data
from Raspberry Pi Pico to Raspberry Pi Zero W, but has one major drawback: power
consumption. While the TCP socket based query system only returns data when queried and
idles all other times, the UART interface provides a constant stream of data which is read in set
intervals. This means that with the UART interface, the Raspberry Pi Pico is constantly running
at a maximum clock speed, drawing a significantly larger amount of power. If more time or
resources were allocated to the transition to the TCP socket based query system, or if the
discovery of the violation of USB standards were found earlier in the development process, the
integration could have been completed for demonstrations. However, as mentioned above, time
restrictions prevented the full integration of the TCP socket based query system, leaving only
the UART interface for demonstrations.

Embedded Code
main.py for TCP socket based query system
#main.py
#sends ADC data over TCP connection to server
#Written by: Nick Moser
#Last edited: April 17, 2022

from machine import UART, Pin
import utime
import sys

#used to set up ESP device
#uses espWrite function to run through setup command list
def espSetup(espDevice,led):

#esp station mode
cwmode = '1'
#wifi SSID and password
wifiSSID = '"testSSID"'
wifiPWD = '"testPWD"'
#list of setup phrases to use
setup_phrases =

['AT+GMR','AT+CIPSTAMAC?','AT+CWMODE='+cwmode,'AT+CWJAP='+wifiSSID+','+w
ifiPWD]
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#run through setup phrases
for i in range(len(setup_phrases)):

#write setup phrase and get write status
espStatus = espWrite(espDevice,str(setup_phrases[i]))
#if the write failed, return failure and give a response
if(espStatus != 1):

print("no ESP device found. Please connect one to UART")
return 0

#wait a quarter second between writes. ESP cant handle full speed
utime.sleep(0.25)

#set the LED high if setup and wifi connection is complete
led.high()
#return one if successful
return 1

#code to simplify writing to ESP device
#takes uart object and write phrase as arguments
def espWrite(espDevice,phrase):

#append newline to any written phrase
endcode = '\r\n'
#write the phrase and endcode
espDevice.write(str(phrase)+endcode)
#wait a quarter second. ESP cant handle full speed
#if there is some returned ESP info associated with the write
while espDevice.any() == 0:

continue
while espDevice.any():

#capture ESP response
espResponse = str(espDevice.readline())
#next two lines parse for printing to serial monitor
espEndIndex = len(espResponse)
print(espResponse[2:espEndIndex-5])
#if the written phrase contains the wifi connection command
if(espResponse.find('CLOSED') != -1):

while espDevice.any() == 0:
continue

if(phrase.find('CWJAP') != -1):
#if the response is that the IP is acquired
if(espResponse.find('OK') != -1):

#return success
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utime.sleep(1)
#if the response is any other connection phrase
else:

#wait until something appears in the buffer
#which will reset the while loop
while espDevice.any() == 0:

continue
if phrase.find('CIPSTART') != -1:

if espResponse.find('OK') != -1:
break

if espResponse.find('ERROR') != -1:
break

else:
while espDevice.any() == 0:

continue
if espResponse.find('OK') != -1:

break
if espResponse.find('OK') != -1:

return 1
else:

return 0

#set up tcp connection
def espTCPSetup(espDevice):

#specify protocol
protocol = '"TCP"'
#specify server to be connected to
server = '"testServer.local"'
#specify port to connect to at server
port = '50010'
#create conenction command
connStart = 'AT+CIPSTART='+protocol+','+server+','+port
#push connection command
if espWrite(espDevice,connStart) == 0:

return 0
else:

return 1

#write to a tcp connection
def espTCPWrite(espDevice,data,dataLen):
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endcode = '\r\n'
#create write command
dataSend = 'AT+CIPSEND='+str(dataLen)
#push write command
espDevice.write(dataSend+endcode)
#wait for esp response
while espDevice.any() == 0:

continue
#when esp responds
while espDevice.any():

#get & print response
espResponse = str(espDevice.readline())
espEndIndex = len(espResponse)
print(espResponse[2:espEndIndex-5])
#if there was an error in transmission, exit
if espResponse.find('ERROR') != -1:

print("cipsend failed")
return 0

#if esp is anticipating data to be sent
if espResponse.find('>') != -1:

#send data
espDevice.write(str(data))
#wait for response
while espDevice.any() == 0:

continue
#if data has been transmitted, leave command
if espResponse.find('SEND OK') != -1:

break
else:

while espDevice.any() == 0:
continue

return 1

#PROGRAM STARTS HERE

machine.freq(250000000)
#Create UART object for ESP device
espDevice = UART(0, baudrate=115200, tx=Pin(0), rx = Pin(1), timeout = 2)
#setup information for ADC
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adc_pins = [26, 27]
adc_tags = ['dcv','dci']
adc = []
#create ADC objects
for i in range(len(adc_pins)):

adc.append(machine.ADC(adc_pins[i]))
#information for sending tcp data
sentBytes = 0
dataSend = ''

#Create LED object to indicate connection to wifi
led = Pin(25, Pin.OUT)

#if startup command fails
if espSetup(espDevice,led) != 1:

#indicate the startup failed, exit the program
print("Setup failed")
sys.exit()

#if tcp connection fails
if espTCPSetup(espDevice) != 1:

print("TCP connection failed")
sys.exit()

machine.freq(16000000)

while True:
#if nothing has been queried from tcp connection
while espDevice.any() == 0:

continue
#if tcp connection requests something
else:

espResponse = str(espDevice.readline())
#if tcp connection wants a measurement
if espResponse.find('meas') != -1:

utime.sleep(0.25)
machine.freq(250000000)
utime.sleep(0.25)
#while buffer has less than 2kb of data
while sentBytes < 2024:
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#collect ADC measurements from both channels
#keep track of data in buffer
for i in range(len(adc)):

adcReading =adc[i].read_u16()>>4
tagData = adc_tags[i]+'?'+str(adcReading)+';'
dataSend+=str(tagData)
sentBytes += len(tagData)

#once buffer has filled, append end tag
dataSend+=str('end')
sentBytes += 3
#write tcp data to server
if espTCPWrite(espDevice,dataSend,sentBytes) != 1:

print("write failed")
#reset buffer and bytes in buffer
dataSend = ''
sentBytes = 0
machine.freq(16000000)
utime.sleep(1)

Old main.py for demonstration with UART interface
#new update
#increases clock frequency for better sampling
#converts reading to actual voltage
#Nickolas Moser
#Last Edited: April 7, 2022

#import necessary modules
from machine import Pin,ADC,UART
import utime

#set up ADC pins
def ADC_setup(adc_pins):

adc_channel = []
for i in range(len(adc_pins)):

adc_channel.append(i)
adc_channel[i] = machine.ADC(adc_pins[i])

return adc_channel

#set up serial communications
def serial_setup(led):
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led.toggle()
serial_object = machine.UART(0, 115200)
utime.sleep(1)
led.toggle()
utime.sleep(1)
return serial_object

def uart_handler(RPi_zero,led):
led.toggle()
while RPi_zero.any():

print(RPi_zero.read(1))
utime.sleep(1)
led.toggle()

#get an adc reading
def get_reading(channel):

window_size = 5
samples = []
samples_sum = 0
for i in range(window_size):

samples.append(3.3*((channel.read_u16() >> 4)/(2**12)))
samples_sum = samples_sum + samples[i]

reading = samples_sum/window_size
return reading

#program starts here

#make it work a bit faster
machine.freq(250000000)

#global variables
adc_pins = [26,27]
adc_quantity = ['dcv','dci']

#device object setup functions
led = Pin(25, Pin.OUT)
led.toggle()
utime.sleep(1)
#RPi_zero = serial_setup(led)
adc = ADC_setup(adc_pins)
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led.toggle()

#while device is turned on
while True:

for i in range(len(adc)):
print(adc_quantity[i],"?", get_reading(adc[i]))

serial_listener.py for testing of UART interface
import sys #needed to do system
level stuff
import glob #needed to list available
/dev/ttyA devices
import serial #needed to communicate
over serial
from time import sleep #not needed
outside testing
import matplotlib.pyplot as plotter

def adc_parse(data_in): #function to parse serial
ADC data

data_in_str = str(data_in) #convert input to string
data_in_rm = data_in_str.split('\'') #remove b' at beginning of

string
clean_data = data_in_rm[1].split('\\r') #remove \\r\\n at end of

string
if clean_data[0].count('.') > 1: #if it accidentally picks up

two readings
return

elif clean_data[0].count('.') < 1: #if it accidentally picks up
no readings

return
adc_reading = clean_data[0].split('?')
return adc_reading

def acquire_picos(): #function to connect to
pico devices

devices = glob.glob('/dev/tty[A]*') #get available /dev/ttyA
devices

open_devices = [] #create return list
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print("Picos available: ", len(devices)) #print available /dev/ttyA
devices

if len(devices) == 0: #exit if no picos are
available

print("No picos available. Now exiting")
exit()

for i in range(len(devices)):
open_devices.append(i) #add to list of

available devices
open_devices[i] = serial.Serial(devices[i],115200) #open device for

communication at baud rate of 115200
print("Picos opened: ", len(open_devices)) #print picos

connected in this step
return open_devices #return opened

devices

#program starts HERE
#below are necessary

global variables
open_devices = [] #list of opened serial pico
connections
device_data = [] #list of device data
collected from picos
collected_data = []
dcv_reading = []
dcv_datapoint = []
dci_reading = []
dci_datapoint = []

open_devices = acquire_picos() #open all available
/dev/ttyA devices
for i in range(len(open_devices)): #create device data list

device_data.append(i)

print("devices acquired")

#for data acquisition testing
for i in range(500):

open_devices[0].flush()
reading = adc_parse(open_devices[0].readline())
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if reading[0] == 'dcv ':
dcv_reading.append(float(reading[1]))
dcv_datapoint.append(len(dcv_reading))
print(len(dcv_reading))

elif reading[0] == 'dci ':
dci_reading.append(float(reading[1]))
dci_datapoint.append(len(dci_reading))

else:
continue

plotter.plot(dcv_datapoint,dcv_reading, label = 'dcv')
plotter.plot(dci_datapoint,dci_reading, label = 'dci')
plotter.legend()
plotter.show()

while True:
for i in range(len(open_devices)): #run through list of opened

devices
device_data[i] = adc_parse(open_devices[i].readline()) #read from

serial port
open_devices[i].flush() #clear buffer once

reading has been collected
print(device_data[i][0],float(device_data[i][1]))
sleep(0.1) #sleep, time is quicker

than pico sleep for testing purposes

socketListener.py to test TCP socket based query system
import socket                                           #needed for socket comm
import matplotlib.pyplot as plotter                     #plotting for testing data
from time import sleep                                  #sleep between intervals

def dataParser(recvData):                               #function to parse returned data
dcv = []                                            #arrays for measurements
dci = []
totalBits = 2**12
splitData = recvData.split(';')                     #split at all semicolons
for i in range(len(splitData)):                     #run thru new split-up array

taggedData = splitData[i].split('?')            #split all indices at ?
if taggedData[0].find('dcv') != -1:             #if tagged as dc voltage

dcv.append(3.3*(float(taggedData[1])/totalBits))#add data to dc voltage
if taggedData[0].find('dci') != -1:             #if tagged as dc current
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dci.append(3.3*(float(taggedData[1])/totalBits))#add data to dc durrent
if taggedData[0].find('end') != -1:             #if end tag is found

break                                       #exit loop
return dcv, dci                                     #return dc voltage and current

#PROGRAM STARTS HERE

dcv_points = []                                         #create arrays for dc voltage & current
dci_points = []
HOST = ''                                               #gets default hostname in setup
PORT = 50010                                            #arbitrary port
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)#create socket object
sock.bind((HOST, PORT))                                 #bind socket object to port
print('socket bound')
sock.listen(1)                                          #listen for connections
print('listening')
clientSocket, address = sock.accept()                   #form connection when esp joins
print("Connection established")
while True:                                             #while active

for i in range(8):                                 #sleep for 30 seconds
sleep(1)
print('sleep time: '+str(i))

data = 'meas'                                       #create measurement query string
clientSocket.send(data.encode())                    #query measurement from pico
recvData = clientSocket.recv(2048)                  #anticipate 2kb response
dataLen = len(recvData)                             #find length of response
parsedData = dataParser(recvData.decode('utf-8'))   #decode and parse data
for i in range(len(parsedData[0])):                 #break parsed data into new arrays

dcv_points.append(float(i))
print(parsedData[0][i])

for i in range(len(parsedData[1])):
dci_points.append(float(i))
print(parsedData[1][i])

#plotter.plot(dcv_points,parsedData[0], label = 'dcv')
#plotter.plot(dci_points,parsedData[1], label = 'dci')
#plotter.legend()
#plotter.show()
dcv_points = []                                     #reset arrays after reading data
dci_points = []
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angle_finder.py for testing of IMU calibration
import time                             #enables sleep
import board                            #imports i2c code
import adafruit_icm20x                  #imports imu code
import math

i2c = board.I2C()                       #create i2c object
imu = adafruit_icm20x.ICM20948(i2c)     #create imu object

cal_values = open("imu_cal.txt","r")    #open file with calibrated values
#following pulls in front/back and side/side calibrated values and converts str to float
#assumes front/back is first, and side/side is second
#assumes lines are separated by \r
angle_frontBack_cal = float(cal_values.readline())
angle_sideSide_cal = float(cal_values.readline())

while True:                             #while true
accel_data = imu.acceleration   #get data from accelerometer

#Code below takes accelerometer data in m/s^2 and translates to an angle
#calculates as mounted in custom enclosure
#frontBack is y/z
#sideSide is y/x

angle_frontBack = ((180/math.pi)*(math.atan2(accel_data[1],accel_data[2])))+90
angle_sideSide = ((180/math.pi)*(math.atan2(accel_data[1],accel_data[0])))+90

#below code finds angle until rv is level
#for frontBack, negative means rear end is lower than front end
#positive means front end is lower than rear end
#for sideSide, negative means right side from front is lower than left side
#positive means left side from front is lower than right side

angle_frontBack_toLevel = angle_frontBack_cal - angle_frontBack
angle_sideSide_toLevel = angle_sideSide_cal - angle_sideSide

#below code gives calculated angle, only relevant for testing
print("front to back angle is ", angle_frontBack)
print("side to side angle is ", angle_sideSide)
print("front to back angle to level is ",angle_frontBack_toLevel)
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print("side to side angle to level is ",angle_sideSide_toLevel)
time.sleep(1)                   #sleep for a second while testing to avoid overrunning the

buffer

angle_cal.py for calibration testing
import time                                     #not really necessary, but is here for testing purposes
import board                                    #contains info for IMU object
import adafruit_icm20x                          #has resources for i2c IMU
import math                                     #used for atan2 and pi

i2c = board.I2C()                               #make i2c object
imu = adafruit_icm20x.ICM20948(i2c)             #make IMU object

angle_frontBack_data = []                       #create array for front/back dataset
angle_sideSide_data = []                        #create array for side/side dataset
angle_frontBack_sum = 0                         #create variable for front/back sum for
average
angle_sideSide_sum = 0                          #create variable for side/side sum for average
angle_frontBack_cal = 0                         #create variable for calibrated front/back
average
angle_sideSide_cal = 0                          #create variable for calibrated side/side average
cal_samples = 100                               #give number of calibration samples

for i in range(cal_samples):                    #populate arrays for sample storage
angle_frontBack_data.append(i)
angle_sideSide_data.append(i)

for i in range(cal_samples):                    #collect samples
accel_data = imu.acceleration           #gets data from IMU, takes ~5ms per sample

#uses atan2 to collect front/back and side/side angles
#y direction points upward
#z direction points forward
#x direction points to side
angle_frontBack_data[i] =

((180/math.pi)*(math.atan2(accel_data[1],accel_data[2])))+90
angle_sideSide_data[i] =

((180/math.pi)*(math.atan2(accel_data[1],accel_data[0])))+90

for i in range(cal_samples):                    #sums samples in arrays
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angle_frontBack_sum += angle_frontBack_data[i]
angle_sideSide_sum += angle_sideSide_data[i]

#finds average value of collected readings
#divides sum of samples by number of samples
angle_frontBack_cal = angle_frontBack_sum / cal_samples
angle_sideSide_cal = angle_sideSide_sum / cal_samples

cal_values = open("imu_cal.txt", "w")           #open txt which holds calibrated values
cal_values.write(str(angle_frontBack_cal))      #write front/back average to file
cal_values.write("\r")                          #add newline, can use other delimiter depending
on operation
cal_values.write(str(angle_sideSide_cal))       #write side/side average to file
cal_values.close()                              #close file when done, good practice

print("Calibration Successful")                 #indicate leveling is complete


